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Absorbing Boundary Conditions for the Discretization 
Schemes of the One-Dimensional Wave Equation 

By Laurence Halpern 

Abstract. When computing a partial differential equation, it is often necessary to introduce 
artificial boundaries. Here we explain a systematic method to obtain boundary conditions for 
the wave equation in one dimension, fitting to the discretization scheme and stable. Moreover, 
we give error estimates on the reflected part. 

1. Introduction. In order to avoid a huge amount of calculation, when solving 
numerically a partial differential equation, one often introduces artificial boundaries 
with boundary conditions chosen so that the problem one gets is well-posed, and its 
solution is "as close as possible" to that of the original problem. 

These boundary conditions can be either transparent, i.e., such that the solution of 
the boundary value problem is exactly the solution of the initial problem, but such 
conditions are generally global in the time variable and so numerically useless or 
approximated. Or they are absorbing, when the energy in the artificial domain 
decreases with respect to the time t. 

This problem is of practical interest, as for instance it arises in geophysics or 
plasma physics, and has been studied in many cases; see [4], [8], [12]. 

In this paper, we study the case of acoustic waves in a one-way propagation. The 
transparent condition one gets on the continuous problem is a local one. But, 
immediate discretization leads to an ill-posed problem. The difficulty is then to 
obtain stable boundary conditions fitting to the discretization scheme. 

We only work on the discrete problem, taking into account that the solution is 
already an approximate one. The methods we use are drawn from the methods 
developed in the theory of singularities reflection; see [8], [9]. 

In the first part of this paper, we explain our method for an explicit discretization 
scheme. We first write a transparent boundary condition, which is global in the time 
variable, i.e., computation of the solution at some time uses the solution at any 
earlier time. With the assistance of the space-discretized problem, we then derive 
some stable conditions, and we point out that these are not canonical. We obtain, for 
each of them, error estimates for the energy of the reflected part. As far as we know, 
such estimates are new. 

In the second part, we show how this method can be extended to any discretiza- 
tion scheme and give the form of boundary conditions in the case of C' cubic finite 
element scheme. 
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416 LAURENCE HALPERN 

Similar boundary conditions have also been obtained by B. Engquist and A. 
Majda [5] for the same model problem. We prove here the stability of our discrete 
boundary conditions. We use energy methods that could be generalized to other 
problems (for example, wave equations with variable coefficients, model wave 
equations with variable discretization step...). But on the model problem the 
numerical results are very similar, without any proof of the fact.... 

2. Preliminaries. The Continuous Problem. We consider here the solution of a 
scalar wave equation on the axis R, where the velocity is taken equal to 1: 

(2.1) Ou - a2u/at2 - a2u/ax2 = 0. 

The initial values (initial state and initial velocity) have a compact support in the 
half-line x < 0. 

The following result is well known: 

PROPOSITION (TRANSPARENT BOUNDARY CONDITION). The transparent boundary 

condition at x = 0 for the continuous problem (2.1) is 

(2.2) au/at + au/ax = 0. 

This result can be interpreted as follows: we introduce the Fourier transform in 
time ut of u 

u(x, = 2 u(x t)e"''t dt. 

Since the initial values are zero for t < 0, we deduce that ut(x, w) is a right-travelling 
wave: 

For all X E R: u(x, w) = 

Motivations for the Study. Consider now a discretization of Eq. (2.1) using a 
second order finite difference scheme: 

(2.3) ~ ~ ~ Uj Gun - 2u, + u, u, n u +un_ un?l - 2u~~~~~~~~~~ + u ~ +1- 2n u 
(2.3) Du7 - i 

_7?1 u=u0,~ 
At2 Ax2 =0 

with the stability condition y = At/Ax < 1. 
The most natural discretization of boundary condition (2.2) is the following: 

(2-4) U0 U0 + -0 f1 = 0. (2.4) ~~~ 
~~2At Ax -0 

The boundary condition (4) leads to an ill-posed boundary problem: 
In order to prove this result, we apply the following criterion*: If the associated 

problem is well-posed, there is no solution of Eqs. (2.3) and (2.4) that decreases 
exponentially as j tends to - oo, and increases exponentially as t tends to +cot. Let 

Vn = (_l)nf+ie(kjAx+wnAt) 

where 

4y2 2- -y 

v,n is clearly a solution of the problem. 

* Cf. Kreiss [7]. 
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FIGURE 1 
Beginning of instability: Approximate solution on the boundary in terms 

of time-step n, up to n = 75, i.e. the time T = 75 At 

Figure 1 represents the solution of Eqs. (2.3), (2.4) with smooth initial data on the 
boundary j = 0 in terms of time-steps, and points out the beginning of instability. 

3. Approximate Boundary Conditions for the Second Order Finite Difference 
Discretization Scheme. We will here consider an explicit discretization scheme of the 
following form: 

(3.1) 
Jn+u -2uj + ju-I u+ -2u, +ujn_I 

where Ax denotes the space-step, At the time-step. 
We assume that the stability condition for the discretization scheme is fulfilled: 

(3.2) y = At/Ax < I. 

First, let us introduce our notation: 

_U_n+ Un __ - _n_ Dx+ D 
+ i AX 'A-(ux ' ? 2 

n 
n+l 

-( 
u 

D+ (UAt At J 2 
We introduce the exterior problem on ]0, +oo[ with the boundary condition 

Un+1 U n u0 -0=n 
At 
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on O, +oo[, the initial values are 0, and so we can obtain a transparent boundary 
condition by a discrete convolution between the discrete time-derivative and the 
discrete space-derivative. 

PROPOSITION 3.1. The transparent boundary condition at j = 0 is 

Dt (U ) ((I 
2 )Dt (Ul n) + y(33D' (Un-2) + - + SnDt ( u)) 

an is the impulsional response, i.e., the solution of the exterior problem when Pn - 82 n 

(Dirac function at n = 2). 

This transparent boundary condition is global: in order to compute the solution at 
the n-time-step, we must have information for all previous times. Therefore, we shall 
investigate approximate boundary conditions which are local in time and lead to a 
well-posed boundary problem. 

In order to obtain these boundary conditions, we first introduce the semidis- 
cretized problem with space-discretization only: 

d 2d2u uj+1 - 2u, + u? _ 

(3.4) dt h 

where h is the space-step. 
We shall obtain for this problem an approximate boundary condition and then 

deduce by time-discretization the desired boundary conditions. 
3.1. Boundary Conditions for the Space-Discretized Problem. We first introduce an 

auxiliary boundary problem on the half-axis x > 0 and get the transparent boundary 
condition at pointj = 0. This is given by an integro-differential relation between u-l 
and uo. We then deduce local boundary conditions, by approximation of the kernel, 
when the wavelength is large compared to h. 

3.1.1. Transparent Boundary Conditions. We introduce the initial boundary prob- 
lem on the half-axisj > 0 

[d2vi v+Il-2v,?v l j>0. 

(3.5) dt 2h2 

The initial values are identically zero. 
The boundary condition is dvo/dt = D(t). 

We assume that D satisfies the regularity condition 

(3.6) D E L2(]O,-+x[). 

The following lemma gives a result on the regularity of v- and the explicit form of 
the Fourier transform of vj: 

LEMMA 3.1. Let (vj)j,o be a solution of problem (1.5); under the regularity condition 
(1.6), we have the following estimates: 

(3.7) Vj>O; dvj E L2(]O,+oo[) and |dv < ?IID IL2; 
dt dt L 2 

(3.8) V > 
h;e L2(]0, +oo[ and <' - IDfljjL2 (3.8) Vj>0; hh L2 
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Moreover the Fourier transform of dv /dt is given by 

dv. 
(3.9) Vj> ? j(w) = D(co)rt(ch) 

where r, is the root of the characteristic equation r2 - 2(1 - w2h2/2)r + 1 = 0, given 
by 

|1 _ x x _4X(1- I x I < 2, o 
(3.10) r,(x) i+x1i )12 

1 2_ X + lXI (X 4 1) ; IxI2, 

We can explain this result as follows: when the wavelength is large compared to h, 
the Fourier transform of v; is a left-travelling wave, and when the wavelength is 
small, it is an evanescent wave. 

The proof of this lemma (see [6, p. 175]) uses limit absorption techniques: one first 
introduces the perturbed absorbing problem, then passes to the limit by using the 
Fourier transform. 

Using "cut-off' and "smoothing" techniques, we apply this lemma to uj, and 
obtain the transparent boundary condition: 

PROPOSITION 3.2 (TRANSPARENT BOUNDARY CONDITION). The solution (uj) of the 
space-discretized problem satisfies the relation 

(3.11) V1T E ]O,-+xo[, Vt e]O, T[: u_1(t) f f 
T 
ri ( wh)uo(t)eiO((-T) dT dw, 

where r, is given by (1.10). 

Fundamental Remark. We have obtained an expression of u-l in terms of uo. We 
could also have obtained an expression of uo in terms of u1: 
(3.12) u0(t) =| 00 f roh)u (t)eiO(t-T)d'dw. 

00 

We shall now deduce the approximate boundary conditions. 
3.1.2. Investigation of Local Boundary Conditions. The method consists in ap- 

proximating the kernel rr'(wh) of relation (3.11) (or the local kernel r1 of relation 
(3.12)) when the frequency w is small. We use Taylor or Pade expansions. Recalling 
that iw corresponds to d/dt, we obtain the derivatives of uo or (uo - u)h. 

When wh is small, we have 

r-1(o) 02 h2 (wco I c2h2\I/2 
r1 (wh)1- 2 +lwFLk14); 

co2h2 h( 2h)21/ r,(coh) =1- 2 - -icoh(I 4) 

Using the first Taylor expansion, we get 

(3.13) du0 + u- ul = 
dt h 

(3.13bis) ~du + u0 - U-1 =0. (3.l3bis) 
~~~~dt h 
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(3.13) is a natural discretization of the transparent boundary condition 
au/at + au/ax = 0. 

The next Taylor expansion gives 

du u0 0-ul 1 h d'! 2 
(3.14) 0 + + -1- = 0O (3.14) dt h 2h 2 dt 2 

du-__ u- u1 h d2u_ _ 

(3.14bis) d + h 2 2 - 

dt h 2 d 

And the first Pad'e expansion gives the reciprocity formulae 

(3.15) du u0 - U1 h d(uo0- U1\ 
dt h 2 dt h) 

(3.15bis) d1+ u0 - u-1 ___duo-__, 
0 

Obviously we are able to obtain boundary condition up to any order. 
We will say that the boundary condition is of order 1, if the expansion is of order 1. 
3.1.3. Stability of the Boundary Conditions. We study the stability with energy 

techniques: 
We denote by Eh(t) the energy in the half-axis x < 0, at time t. Eh is given by 

(3.16) E 2 h di h( Jhi). 

Then, the following energy estimates hold: 

(3.17) dE _du1 u0 - 

and 

(3-18) ~d E duo u0 - U1 
(3.18) dt dt h 

We can now deduce 

PROPOSITION 3.3. All the approximate boundary conditions written in 3.1.2 are 
stable: The energy at any time is bounded by the energy at the initial time. Moreover 
the boundary conditions (3.13) and (3.13bis) are absorbing. 

From these stable approximate boundary conditions, we can derive stable 
boundary conditions for the discretized problem. 

3.2. Approximate Boundary Conditions for the Discretized Problem. We determine 
these conditions by discretization of the conditions (3.13)-(3.15bis). We use a 
centered divided difference for the time-derivatives, in order to obtain-whenever it 
is true-the stability by energy methods. 

Indeed the energy identity is 

(3.19) (En+, - En)/2At - Do(Uln)Dx(Un) = 0. 

We have seen that the discretization of (3.13) leads to an ill-posed boundary 
problem. On the other hand, the equality (3.19) shows that, from the condition 
(3.14bis), we obtain a stable boundary condition. 
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We can prove also that the boundary conditions of second order, deduced from 
(3.14) and (3.14bis), are stable, but the one deduced from (3.15) is not. 

Hence, the method does not determine systematically stable boundary conditions. 
But, as far as we know, a systematic method to obtain such boundary conditions 
does not yet exist (see, for example, [4]). 

Therefore, we can sum up our results: 

PROPOSITION 3.4. The two following boundary conditions hold: 

(3.20) (1) Do(un1) + Dx(uo) = 0, 
(it is absorbing). 

Ax Dt Dt 
(3.21) (2) Do(un)+ Dx(un) + 2 U nu) =0 

(it is stable, and transparent when At A lx). 

Notice that the boundary condition of second order (3.21) is close to the one 
written by B. Engquist and A. Majda (see [4]), but here the stability is given by 
energy estimates. 

Example. The initial velocity is equal to 0. The initial state is the following: 
4..8 

0.1 

0.ra 

o I A 

0.1_ 

0. 0. 0.4 0.; o 0.1 

FIGURE 2 
We impose the boundary conditions at x = 0 and x = 1. 
We take y = 0.1, Ax = 1/64. Solutions are drawn at time T 1, the exact 

solution being zero. 
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FIGURE 3 

Boundary condition (1.20) 
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FIGuRE 4 

Boundary condition of Engquist and Majda 

Conclusion. For other discretization schemes, the sketch of our method will be the 
following: 

(1) We obtain stable boundary conditions on the space-discretized problem at the 
pointj = 0 with Fourier techniques. 

(2) We discretize in time with centered divided differences at the pointj = -1. 
3.3. Error Estimates. We shall see that, under regularity conditions for the 

solution, we can obtain error estimates for the solution of the problem in the 
artificial domain: the accuracy of this method being the order of boundary condi- 
tions. 

We denote by ujn the solution of the problem on R, and vjn the solution of the 
problem on the half-line x < 0, with one of the boundary conditions (3.20), (3.21), 
which we denote by BCA. Let 

(3.22) wj, vj - u; j s0. 

wjn is the reflected part of ujn by the boundary condition. (wjn)j_o is a solution of the 
initial boundary problem on ]-oo,0[, with initial values identically zero and a 
boundary condition atj = 0 

BC(wo, w_1) = -BC(uo, u_1). 

Let uj(t) u ujn; vj(t) = vj"; wj(t) = wjn on ](n - 4)At, (n + l)[. 
On the half-line] < 0, uj satisfies the relation 

(3.23) uu(t - At) - 2uj(t) + uj(t + At) uj+1(t) - 2uj(t) + uj-1(t) 

At2 Ax2 

The same equation holds for Vj and wj. 
This remark leads us to the space-discretized problem. 
3.3.1. Error Estimates for the Space-Discretized Problem. We keep the same 

notations: uj denotes the solution of the problem 

d 2U _ uj+1 -2u1 + u =jl 
dtw 2 h 2 

with initial values in K [1, in], m < 0. 
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v; denotes the solution of the same problem on the half-linej < 0 with one of the 
boundary conditions written in 3.1.2, and W = V, - u is the part of uJ reflected by 
the boundary condition BC. 

As in Proposition 3.1, we can obtain the expressions of the Fourier-transforms of 
Uj and w; where r, is defined in (3.10). (See Figure 5.) 

wo ri 

ugr l i G r ]- 

QE///////]m ~~~~ lo - 

1~~~~~~~~~~~~~~~~~10 

j m~~~jr 

FIGURE 5 
The reflection coefficient R is defined with the Fourier transforms of uj and wj by 

(3.24) - ( ) = R(wh)uo(w). 

We can estimate R by 

LEMMA 3.2. The reflection coefficient satisfies the estimate 

(3.25) 1 R(h) I<I wh 

where 1 is the order of the boundary condition. 

This estimate is deduced from the explicit form of the reflection coefficient for 
each boundary condition. 

In order to obtain error estimates, we must get estimates on the time-derivatives 
and discrete space-derivatives of Wh. 

LEMMA 3.3. If / is the order of the boundary condition, we have the following 
estimates: 

(3.26) vTe]0,+o[;Vj<?:|( dt 
W 

dt < Ch2' ? |( dT+IU_1 )dt 0\dt j = dtk+lI 

(3.27) JT( h )dt < Ch2 f( dtk ( h )) 

We only give here the proof of (3.26), in the case where the boundary condition is 
(3.13): 

duo + o h U- = o; 1= 1. 
dt h - 

The other cases can be treated by a similar method. 
*First, we prove the result forj = 0: 
From the explicit forms of W and QJ given in Figure 5, we deduce a relation 

between iO and um: wo = rjM m' which gives 
do_ - r-mR((,h) \ d2m 

dt 'i. i&ih I dt2 
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Under the assumption that d2Um/dt2 lies in L2(]0, +oo[), and using the Parseval 
inequality, we get 

+ 00 dwO )2 + oo d2 Um 2 

Here, d 2Um/dt 2is not in L2(]0, +oo[), but in L2(]0, T[) for each T > 0. It is easy 
to see that this problem may be reduced to JO, T[. Indeed the map dum/dt H+ wo is 
causal, that is the value of wo at time T depends only on the values of dum/dt at time 
t < T. Then, by truncation and regularization, we can use the Parseval inequality to 
get 

T dwo ) < Chh T dum ) + 1 d 2m )) dt. 

*Now, for eachj < 0, we have the following relation between w and uamj: 

w=Rrjmamj, 

which is independent of j. Since it is causal for j = 0, it is too for every j. The result 
(3.26) follows as in the first step. [1 

We are now able to obtain, with the usual regularity assumptions on the initial 
value, 

THEOREM 3.1 (ERROR ESTIMATES). Let / be the order of the boundary condition. 
Assuming that the initial state is in H'+ '(IO, +oo[) and the initial velocity is in 

Hl(]O, +oo[), we have the following estimate on the energy of the reflected part: 

(3.28) VT E ], +? [: T 4 Eh(wh)(t) dt < 

where C is a constant, depending only on the initial values. 

Practically, we introduce two artificial boundaries with the same boundary condi- 
tion. This leads to a difficulty: we then have to deal with two reflections at the same 
time: 

62 ri 

6~ 1 umrl 

GQ r Gm r3l 

n QJlli l m jo 
FIGURE 6 

(3.29) w;= ,r(i + b2r1i. 
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We have to use, instead of a reflection coefficient, a reflection matrix 

Wi 7-n 
U 

((m+j) 

The matrix K(J) depends on r, and R. It has a singularity at the critical frequency, 
i.e., I wh 1= 2, where r1 = -1 and R = -1. Therefore, we obtain less accurate 
estimates for K(j) than for R. On the other hand, if we consider the mean-value of 
wh on two space-steps 

(3.30) 2 = + w 

we get for (K(j) + r K(j+')) the same accurary. 

LEMMA 3.4. If I is the order of the boundary condition at j = 0 and j n, the 
following estimates on the reflection matrix K(J) hold: 

(3.31) 11 K(j) 11 < C( j + 1) I wh |1; n /2 <: j <: 0, 

(3.32) II-(K(j) + r,K(j+lI 
1 C Ih 1'; n/2 < j < 0, 

where C does not depend on w, j, h. 

Then, the same arguments as in Lemma 3.3 and Theorem 3.1 give 

THEOREM 3.2 (ERROR ESTIMATES ON A BOUNDED DOMAIN). If wh = (ws) is the 
reflected part of Uh = (uj) by two artificial boundaries, where the same boundary 
condition of order 1 is imposed, under the regularity assumptions of Theorem 3.1, we 
have 

(3.33) VTCe]O,+oo[; +JEh(wh)(t)dt s 

0 

where Wh is the mean-value of wh on two space-steps, given by (3.30). 

We remark that, in (3.33), the order of the estimate we get is one less than the one 
in (3.34). In particular, for the first order boundary conditions (3.13) and (3.13bis), 
we only have 

Tf Eh(Wh)(t) dt < C. 

In order to improve this result, we derive an L? estimate on wh. 

THEOREM 3.3 (L?? ESTIMATES). Under the assumptions of Theorem 3.2, we have 

(3.35) VT E ]0,+oo[: Eh(wh )(t) Ch21 JTEh( d'h )(t) dt. 

We are now able to obtain error estimates for the discrete problem. 
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3.3.2. Error Estimates for the Discretized Problem. Suppose that uj is in L2(]0, +oo[). 
We can introduce the Fourier transform of u1. It satisfies the equation 

sin, 2 
2 

-2 1- j 
tX0 h2 z2u +u = O 

2! 

Here can be written as 

uj = alr,AJ t + a2rTA1, 

where rl, A t is given in terms of r, (introduced in (1.10)) by 

csin 
At 

sn2 

2 

When At tends to zero, the boundary condition BCAt tends to a boundary 
condition BC, which is of the same order. The reflection coefficient RA, of BCAt is 
given in terms of the reflection coefficient R of BC by 

sin 2A 
RAJ(co) = R 2 

2 

It is periodic, and when the order of BC,A, is 1, we have RAI,(w) 1?1 coAx j' 
Therefore we have the following estimate: 
Assuming that the solution uj of the initial value problem is in 12(N), the following 

error estimate for the energy of the reflected part wj at j 0 O holds: 
lN 

N En s ch 21 
0 

where I is the order of the boundary condition, and C is a constant depending only on 
the initial values. 

We shall now see how our method can be used to construct stable boundary 
conditions for finite element schemes. 

4. Application of the Method to the Finite Element C1. We consider here an 
approximation of the wave equation with cubic finite elements: the real-axis is 
divided into segments [xi, x,+1 ] of length h. The approximation space is the space of 
functions C, which are polynomial of degree 3 on each segment. The degrees of 
freedom are the values of the function and its derivative at the point x1. 

Let 

(U(xj) u 
(4.1) ~~~~~uj = 

hu'(x,) 
- 
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The partially discretized problem can be written as follows (cf. [ 131). 

d2U 
(4.2) Mh2 

d j 
= A-lu>I + AoUj + AlUj+ l 

dt 2 L%+AL+ L~. 

M, A-l, AO, A, are 2 X 2 matrices, M is the mass matrix. 
4.1. Dispersion Relation. Formally, we can apply the Fourier transform to Eq. 

(4.2). On the two half-lines, where the initial values vanish, U. satisfies the equation 

(4.3) A I>i + (AO + W2h2M)L)+ AUl 0. 

The solutions of (4.3) have the form Uj = r U, where r and U are related by 

(4.4) (A- + r(A0 + w2h2M) + r2A )UA 0 

(4.4) is the dispersion relation. 
We deduce in particular the form of the harmonic wave solutions of (4.2): 

LEMMA 4.1. The harmonic wave solutions of (4.2) can have any of the following 
forms: 

(1) The travelling waves: 

(4.5) U - e' Ul elkh and U being related by (4.4); 

(2) The evanescent waves: 

(4.6) Uj - eiwt+" U, evh and U being related by (4.4). 

4.2. Transparent Boundary Condition. By the same arguments as in Lemma 3.1, we 
deduce from the dispersion relation an expression of U; on the right-hand side of the 
compact support of the initial condition 

(4.7) (wh) = ri(wh)CA'( (h ) + rj(wh )UJ2)(oh), 

where (r1, U0L)) and (r2, U(2)) are related by (4.4). 
So, Uj is the sum of two waves which are either travelling or evanescent. 

PROPOSITION 4.1. The transparent boundary condition for the partially discretized 
problem has the following form 

(4.8) ~ ~~~ U ( -(1), A(2)3r ? )(_(1)' .(2) Al 

From now on, the mass matrix is assumed to be the identity. 

4.3. Discretization of the Continuous Transparent Boundary Condition by Finite 
Elements. We have seen that the transparent boundary condition for the continuous 
problem is au/at + au/ax = 0. 

By discretization, we get the discrete boundary condition 

(4.9) U,L l =( 1o 3) Uo + h (23 0 )dU 

This boundary condition is clearly stable. 
4.4. Approximate Boundary Conditions. In order to obtain approximate boundary 

conditions, we expand rl, r2, U(2) of relation (4.8), when the wavelength is large 
compared to h. 
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For example, with Taylor expansion of order 1, we get 

F2 ~~2 2~2 -1 

(4. 10) U1= 1/ 6 U0+h 
3 6 3 6 dU 

o 3 + 22 2 + 2F2 2 dt 2 

It can be proved, by energy techniques, that this boundary condition is stable. 
4.5. Comparison Between (4.9) and (4.10) in Terms of Reflection. We investigate 

here the reflection of an evanescent wave by the two boundary conditions, when the 
wavelength is large compared with h. 

An evanescent wave is reflected as the sum of an evanescent wave and a travelling 
wave. 

In the first case, i.e., the boundary condition (4.9), the amplitude of the reflected 
travelling wave increases as I/wh when wh tends to 0; in the second case, i.e., the 
boundary condition (4.10) calculated by our method, the amplitude of the reflected 
travelling wave decreases as wh: the evanescent wave is absorbed. 

In order to obtain a stable boundary condition for the discretized problem, we 
discretize the term dU I/dt of (4.10) with a centered divided difference, and we get 
finally: 

THEOREM 4.1. The following boundary condition of first order holds: 

1 F2 2 - 2 2r2-1I (4.li) u~~~~~~~ 3 6 36 -1 
(i 3 -:)2F2 2 + 2 ___2+- (4.11 un,= t 6 )U0 +h 2 +W1 L /t 

22 2 

It is absorbing. 

Obviously, we must calculate boundary conditions of order larger than 1. This 
calculation is more difficult, and we will use the computer; see [6]. 

Conclusion. We have, for two schemes of space-discretization (finite differences 
and finite elements), approximate boundary conditions which are stable. For the 
finite difference scheme, the boundary condition is close to the one available in 
earlier papers (see for example [4] and [8]). 

But, and this is new in the field, as far as we know, we obtained error estimates for 
the reflected part. And for the finite element discretization scheme, the results 
obtained with our boundary conditions, particularly in the case of nonsmooth initial 
values (evanescent waves), are better than the ones using variational formulation. 

Of course, one can apply our method to any discretization scheme of the wave 
equation; see [6]. 
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